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USA 

Received 25 August 1992 

Abstract. We review the Vapnik and Chervonenkis theorem as applied to the problem of 
generalization. By wmbining some of the technical mcdificafions proposed in the Literature we 
derive tighter bounds and a new version of the themm bounding the accuracy in the estimarion 
of generalization probabilities hom fiNte samples. A critical discussion and comparison with 
the results from statistical mechanics is given. 

1. Introduction 

Over the past few years, there has been a rising interest in the statistical mechanics of 
generalization and rule extraction [l-51. A major reason for this new development is the 
success with which techniques borrowed from the fields of spin glasses and associative 
memories can be used to evaluate analytically training and generalization curves for the 
perceptron and its variants. On the other hand, statistics is the home turf of what 
generalization is all about: predicting data on the basis of a training set. Traditionally, 
most of the focus was on parametric statistics which involves assumptions about the 
form or prior knowledge of the underlying probability distributions. More recently, major 
progress has been achieved in the context of non-parametric statistics. One of the beautiful 
results is the so-called Vapnik-Chervonenkis ( v c )  theorem, establishing bounds for the 
uniform convergence of frequencies to probabilities for a whole class of events, and this 
independently of the underlying probability distributions. The theorem was recently applied 
in the context of generalization for neural network architectures by Baum and Haussler 161. 

Even though insightful and didactical introductions to the vc theorem are available in 
the literature [3,7,8], we believe that the more powerful variants of the theorem are not 
well known, especially in the statistical physics community. The purpose of this paper 
is to fill this gap, while at the same time adding significant technical refinements to the 
theorem itself. We also present a streamlined proof, which we believe is clearer and allows 
technical improvements to be easily incorporated and the derivation of v a r i a h  of the 
theorem. In section 2, we give a self-contained presentation of an improved version of 
the vc theorem, with the proof given in appendix A. In section 3, we introduce a variant 
of the theorem related, on the one hand, to the teacher-student scenario which has been 
studied in detail in the statistical mechanics literature and, on the other hand, to the probably 
approximately correct (PAC) leaming model 191, the usual approach for ‘learnable’ problems 
in the computational science literature. In section 4, we introduce another variant of the 
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theorem which combines the features of both previous versions. Finally, in section 5 ,  we 
conclude with a critical discussion of the practical implementation of the vc theorem, and 
make a comparison with the results from the statistical physics literature. 

J M R Parrondo and C Van den Broeck 

2. Review of the Vapnik-Chervonenkis theorem 

We first reformulate the vc theorem, in a way that is more convenient to discuss the problem 
of generalization. Consider the functions f, defined on a domain Q, and taking values +l 
or -1 

f :G' --+ (+l, -1) 

€ -+ f (5). 

These functions provide all possible binary classifications of the input or question space a. 
We select one of these functions as the so-called target function, say the function f. 

A quantity of interest is the 'error' probability e f ,  defined as the probability that f and f 
give a different classification for a randomly chosen example, 5 E Q. By random choice, 
we mean that the example is chosen according to a probability distribution defined on G'. 
Note that e f  depends on the latter probability distribution and on the target function f @ut 
we omit explicit reference to this dependence for simplicity of notation). The interest of 
the quantity ef is that it tells us how well or rather how badly the function f predicts the 
outcomes of the target function ff. 

One expects the frequency of errors observed on a finite sample of test examples to be 
close to the error probability ef when the size of the test set is large enough. This is the 
basic link between generalization and statistics: quantifying the convergence of frequencies 
to probabilities which is, in the context of generalization, nothing but the convergence of 
the performance over the training set to the actual performance of the net. For example, to 
evaluate the quantity ef for a particular function f without an exhaustive comparison over 
all the possible input pattems, we can invoke Bemouilli's theorem stating that the observed 
frequency U,? of error, defined as the fraction of times that f and f give a different answer 
on m independently chosen examples, converges to the me probability ef  in the limit of 
an infinite number of 'independent h a l s  m + CO. The Hoeffding inequality [IO, 1 I] gives 
an idea of how fast this convergence takes place with increasing test size m$ 

Prob[lu,? - efl > E ]  < 2e-z'zm. (2) 

7 A sometimes useful view of these error probabilities arises when they are interpreted 85 disronces. In fact, in the 
particular case that the input variables are binary, a = ( - I ,+ lJn  and if, moreover, the probability distribution 
on S2 i s  uniform. i.e. every single of the 2n input pattem is equally likely, ef is proportional to fhe socdled 
Hamming distance between f and f: 

ef = d ( f  I/2" 

where the Hamming distance between the finctions f and f is denoted by d ( f ) ,  0 < d(  f) < Zn and is equal to 
the number of differences in their respective vuth table. 
$ Note that mu? is a binomial random variable since it is the sum of m independent random variables which take 
the value I with probability ef and 0 with probability 1 -e!. From this point of view the Hoeffding inequality 
(2) is just a bound for the tail of the binomial distribution, whose main virme is that it is independent of the value 
of e f .  For the special case that ef = 112, one can derive a better bound. namely the one implicit in equation (6). 
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Roughly speaking, one concludes that the convergence of frequency to probability goes as 
I,/& which is actually the familiar type of convergence associated with a central limit 
theorem. 

In the context of generalization, one tries to match the outcomes of an unknown function 
F. A natural way to do so is to work with a whole class of candidate functions 3, rather 
than with a single function, and to check how each of them is performing on the training 
set. Hopefully, the one function that is selected because it has the smallest observed error 
rate will have a true probability for error which is equally small. The class of functions 
that is considered is sometimes called the rule or hypothesis space. For example, 3 could 
correspond to the class of functions that can be implemented by a specific neural network 
architecture. It is tempting to invoke the Hoeffding inequality to claim that the true and 
observed probabilities of error for the selected function will be close to each other. This, 
however, is incorrect, for the same reason thar for example, the largest of a number of 
identically distributed random variables has a probability density which is no longer equal 
to the original density. To illustrate this point further. consider a rule space which contains 
all the binay classifications. It obviously contains all the functions that match f perfectly 
on the training set, so their test error is zero. However, these functions realize all the 
possible classCfications on the other examples, so that for the latter examples there is no 
correlation between test error &d true erfor. The correct way to proceed is to bound the 
maximum deviation between frequencies and corresponding probabilities for the whole class 
3 of functions or, more precisely, a bound for the probability 

ProbImax [UT - eJl > E ] .  (3) 
J E 3  

This~bound then a fortiori applies to any one of the functions that one decides to select. 
If the class 3 is finite, say it contains N elements, such a bound can easily be derived 

from the Hoeffding inequality since the probability of observing a deviationlarger than E for 
at least one of the functions f E Ci is smaller than the sum of the probabilities of observing 
such a deviation for every single one of the functions. Hence, 

and one says that the error frequencies converge ‘uniformly’ to their corresponding error 
probabilities. As an example, consider the class of functions that can be. implemented by a 
network with n binary weights. A special case is the class of binary or king perceptrons 
(the weight vector J has components Ji = +I  or -1, i = 1 , .  . . , n). One can apply the 
above result with N = 2”. In the limit m and n 3 cq with a tixed value of the ratio 
o( = m / n ,  one concludes that with probability one, none of the observed frequencies differs 
from their corresponding probability by more than the accuracy threshold cth = ..I-. 
Note that this result is independent of the target function f. 

From the above derivation, it would appear that not much can be said about the ‘uniform 
convergence’ of frequencies to probabilities fora class 3 of functions with an infinite number 
of elements. On the other hand, one expects that there exist such classes of functions with a 
very limited ‘classification diversity’. To illustrate this point, consider the class of functions 
3 for which at most n input patterns are classified as +l. If the number of elements in 
Q is infinite, there are an infinite number of such functions. To quantify .the ‘classification 
diversity’ of this class of functions we introduce the quantity A(m) defined as the maximum 
number of different classifications which can be induced by the functions f E 3 on m 
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examples. Clearly, every possible classification can be induced when m < n. On the other 
hand, form > n, one can only perform all those classifications in which the number of +1 
is not larger than n. Consequently one finds 

J M R Parrondo and C Van den Broeck 

= T for m < n 

An estimate of how the number of classifications is limited for m 
the following bounds [ 12-14] 

n > 1 is provided by 

Therefore, instead of the exponentially large total number of classifications 2”’. only a 
polynomial large number of them is realized form > n. 

It was proven by Vapnik and Chervonenkis [I51 and independently by Sauer [I31 that the 
above deswi;hed behaviour of A(m) is, in fact very general. For every class of functions 3, 
there exists a unique integer number dvc, called the vc dimension (which is possibly equal 
to co), such that for m < dvc, all the 2”’ classifications can be implemented (for at least 
one choice of the m examples), while form > dvc, this is no longer the case. Moreover the 
above example, with the growth function (5), gives the largest number of classifications that 
can arise for all the classes with a vc dimension dvc = n. Consequently. given knowledge 
of the vc dimension, one concludes that (cf equation (6)) 

for m < dvc 
for m > dvc. 

A(m) [ = 2m < I e m / d v ~ l ~ ” ~  
(7) 

The vc dimension is thus a way to identify classes of functions with a limited scheme 
of classifications. This limitation in the classification capacity is’ obviously a necessary 
characteristic For generalization. As we explained before, for a class that provides all 
possible classifications there is no correlation between the error frequencies on the training 
set and the error probabilities. 

Several classes of interest with a finite vc dimension have been identified rectangles 
and half-planes (perceptrons with no threshold) in R” [16], Boolean functions [SI, general 
neural networks [6] and so on. 

For such classes, Vapnik and Chervonenkis [15] were able to derive an upper bound for 
the probability that any of the frequencies v,f differs by more than E from its corresponding 
‘true’ frequency ef, V f E 3: 

hob[max lu/” - efl > E] < 4A(2m)e-mfz/8. res 

This original bound has been subsequently refined by Vapnik himself [I21 who obtained 
-me2/4 in the exponent Looking for a faster convergence in E for a fixed number of 
examples m, Devroye [I71 succeeded in obtaining the same exponent as in the Hoeffding 
inequality, i.e. -2mc2, but at the expense of evaluating the growth, function in m2 instead 
of m. By a combination of the ideas present in both proofs, we have obtained the following 
improved VC result (see appendix A): 
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with c1 = 6ea, a constant slightly larger than six. By comparing the VC bounds (8) and 
(9) and the Hoeffding inequality (2) we note that the proportionality factor A(2m) plays 
the role of the effective number of elements in the class. On the other hand, we have lost 
a factor of 2 for the convergence rate in the exponent (but this factor can be restored at the 
cost of increasing the prefactor, cf [17] and see below). 

In the case of a class of functions with a finite vc dimension, the prefactor A(m) 
only grows like a power law for m > dvc, and we again conclude that the differences 
between observed frequencies uy and true probabilities ef will become uniformly small as 
m + m. This is nicely illustrated by applying the inequality (7) for the growth function 
and introducing the variable a =~m/dvc ~. 

Prob[max lv? - efl cl < CI exp[-dv&c2 - ln(2a) - l)]. 
f€3 

In many applications, and particularly those considered in the statistical mechanics 
literature, the regime of 'interest is the analogue of a thermodynamic limit in which 
dvc + CO. In that case the right-hand side of (10) has a sharp behaviour as a function of 
the accuracy E .  There is an akuracy threshold 

above which the right-hand side of (10) vanishes in that limit. Therefore, wirhprobabili@ 
one all the error probabilities e/ lie in an interval of radius e&) and centred at the 
corresponding frequency U? over a test sample of size m = advc. 

A stronger version of the vc theorem can be obtained using the more general result, 
valid for any integer m' (cf appendix A) 

with c2 = 4e4en"/tm+m'+ a constant slightly larger than four. In the limit m' >> m one 
recovers the Hoeffding exponent but the argument of the growth function m + m' is also 
increased. In the above introduced thermodynamic limit it is convenient to set m' = xdvc, 
so that we can rewrite (12) as 

which is valid for any value of x. In the limit dvc -+ CO, the accuracy threshold becomes 

a + x  
c,h = min -J (In@ + x) + 1)/2a.. 

x x  

For a large one can choose x = ra with 1 << r << a, finding the following asymptotic 
result 

which is a factor & sharper than the result given by (1 1). 
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3. A vc theorem for learnable rule 

Our purpose here is to draw attention to a variant of the vc theorem [6,8,18], which allows 
one to obtain a much stronger bound on the generalization performance. The point is that 
the convergence of frequencies to probabilities is much faster when the observed frequencies 
are close to 0, which is precisely the situation of interest in the context of generalization. 
For example, the probability that the observed frequency uy for a single function f is found 
to be equal to 0 while the true probability is larger then E, can be bound as follows: 

J M R Parrondo and C Van den Broeck 

and this inequality is valid for any probability density of the error P,(x), i.e. either for 
a fixed target function 7 and a fixed f ,or for random choice of both according to some 
probability distribution on the class 3. We conclude that the error probability e,- decreases 
as I /m to be compared with the l / f i  behaviour~observed in the Hoeffding inequality (2). 

Consider now the more complicated situation of a class of functions 3 from which one 
selects all the functions f that score perfectly U? = 0 on m training examples. These 
are the so-called compatible functions. The class of these functions will be denoted by 
3; = [ f l  f E 3 and U/" = 01 and is sometimes called the version space. We will assume 
that this class is not empty; in other words, we are considering the case of a 'learnable' 
rule. In the statistical physics literature, this student-teacher scenario was introduced by 
Gardner and Demda [I91 in the context of the binary peneptron. The related PAC approach 
was introduced by Valiant in computational science literature [9J. The following improved 
vc bound can be derived following essentially the same steps as those used in the original 
vc proof (see appendix B for details): 

m I-cm' 
Prob[maxef z E] 4 2A(m') (1 + -) 

fa; m' 

and it is valid for any integer m'. In particular, form' = m, one finds (compare with (15)) 

(17) 

Note the important improvement over the vc theorem (12) with a fa.ctor E rather than 

In order to study the thermodynamic limit m and dvc -+ 00, with a fixed value of the 

Probtmaxef > E]  < 4A(m)2-". 
f a ,  

c2 in the exponent in the right-hand side of the inequality. 

ratio ff = m/dvc, we set m' = xdvc and rewrite equation (16) for x > 1 as follows 

ff 
Probfmaxef > E ]  < 2 (1 + ;) exp[-dvc(ExIn(l+ a/x)  - Inx - l)]. (18) 

fa; 

We conclude that the accuracy threshold is given by 

lox + 1 
E,&) = min 

x>! xln(1 +(u/x) 

and all the error probabilities el of the compatible functions are smaller than ~ ~ h ( f f )  with 
probability one in the thermodynamic limit. Note that for & large, one can choose x = ra 



Vapnik-Chervonenkis bounds for generalization 2217 

with 1 << r << a and the error probabilities converge to zero at least as e&) Y Ina/ f f .  
This improves the result given in [16] by a factor of 2/ln 2 (see also [ZO], section 10). 

Another version of the theorem due to Blumer et al [18] shows that the behaviour of 
proportional to Innla persists to a certain extend for unleamable rules. They derive the 

following inequality, valid for 0 < y c 1, 

where the error probability of the worst function among those which have error frequencies 
less than ye is compared with E .  Introducing in (20) the bound for A(m) (7), fie accuracy 
threshold efi is found to be proportional to Ina/cu. 

4. vc theorem for frequency sampling in the version space 

In this section we present a version of the vc theorem that provides the convergence 
conditions for the frequency of errors to the error probability for those functions that result 
after training, i.e. functions, in a given version space. The setup is: we first select from 
the hypotheses space those functions~that make no error on a set of ml training examples, 
and determine the error frequencies of the functions iri the resulting version space over a 
sample of m2 examples. The question that we address here is how these error frequencies 
converge to their respective error probabilities by bounding the following probability 

P (ml , mz) = Prob[sup ~(uY', 0)IuY - ef l > E ] .  (21) 
f C 3  

Following identical steps to those in &e preceding sections (see appendix C for details), 
one finds 

P(m1,mz) 4 ZA(2mZ)maxexp [ - (mz + 1)(emz - 1)' -"""I (22) 
I- ( k + 1 ) ( 2 m ~ - k + I )  2m2 

where k is an~ integer that runs from O to 2m2: 
In the limits dvc, ml. m2 + cc with a; = m;/dvc finite and using the bound (7) for 

(23) 
the growth function, the inequality (22) can be rewritten as (a1 > 1 and a2 > 1) 

P (~ I ,UL?)  4 2expI-dvc(f (ff1.a~) - I n ( W  - 111 
with 

For a]  = 0 the minimum is attained for x = 112, and we recover the vc theorem (10). On 
the other hand for E- << 1, one finds the minimum at x = - ; E -  and f becomes 

f (al. (12) E f i .  (25) 
Combining (23) and (25) one finds the accuracy thieshold (a1 > ~1 h d  012 

cth = W.w)ifi. (26) 
As in the previous section, it can be seen that the threshold decreases with respect to the 
one given by the original vc theorem as a consequence of restricting the supremum to the 
version space induced by the ml first examples. When a1 and 012 are both large and of the 
same order of magnitude the threshold value (26) is still valid. Assuming, for example, that 
a1 = 012 = a,  i.e. that we use the first half of a set of examples to train the network and the 
second half to test its performance, we recover the familiar asymptotic behaviour Ina/a, 
but having in mind that this accuracy threshold bounds the distance between the true error 
probability and the frequency measured in the second half of the examples. 

1) 
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5. Discussion 

Explicit analytic results have been obtained in the statistical physics literature for the error 
curves in function of 01 for several variants of the perceptron and for various training 
schemes [2,4,5,19,21-28]. For a learnable rule (i.e. the target function is an element of 
the hypothesis space) and perfect training, one typically observes a I/a asymptotic decay 
of the error. Such behaviour is also predicted on the basis of an approximate theory 
[29,30] (provided the a priori distribution has no gap at zero distance from the target 
[3]). Furthermore, when the a priori distribution of the target function is known, one can 
define a Bayesian and Gibbsian strategy (which classifies a new question following the 
majority vote or a random vote from the version space respectively). In this case, it can 
be proven [20] that the average error is not larger than l /a and Z/(Y for Bayes and Gibbs 
respectively (with the conjecture that the real bounds are a factor 2 sharper). Finally, it 
is also worth mentioning that for systems with a continuous valued output (rather than 
the [l, 01-valued output that we have considered here) trained by gradient descent on a 
smooth error function, a replica calculation again predicts a l/a! asymptotic decay of the 
error 141. The I/@ behaviour has to be compared with the Ina/a decay predicted by the 
vc theorem for perfect leaming (section 3). The difference between both results is usually 
explained by pointing out that the vc theorem corresponds to a ‘worst case scenario’, both 
with respect to the choice of the target function f and of the selection mechanism. We do 
not believe that this explanation settles the issue. First, one can wonder whether or not the 
vc proof can be improved to come in line with the l/a behaviour. The answer seems to 
be no, since an explicit example has been constructed that gives rise to a (1 - l/e) Inorla 
worst case behaviour [16]. In this example, however, the Incu/a behaviour is observed for 
a number of training examples much larger then the number of elements in the question 
space 52. This certainly is a very artificial situation, which cannot occur when the question 
space has an infinite number of elements. Second, under which circumstances can a ‘truly’ 
worst case scenario arise? For example, those perceptron training schemes which have been 
studied in the statistical physics literature and give rise to a I/@ behaviour, are completely 
symmetric with respect to the choice of the target function, and consequently have ermr 
curves which are independent of the target function. In this case, there is not really a ‘worst’ 
choice of a target function (this is certainly not a typical situation, cf [31]). One can thus 
raise the question whether a l /a behaviour arises in all cases for which there is such a 
symmetry. More generally speaking, it remains an open question whether one can recover 
the ubiquitous I/cu behaviour from a m d i e d  vc theorem by introducing some additional 
assumptions of a general nature (such as the specification that the question space 52 has 
an infinite number of elements), or by including some additional properties of the VC class 
(such as symmetry with respect to the target function). 

On the other hand, it is remarkable that similar considerations can be made on the 
VC theorem for non-perfect leaming (section 2). One example where such a version of 
the theorem is applicable and explicit calculations have been performed is given by the 
perceptron trained by Hebbian rule when the teacher is also a perceptron [21]. We find 
again a similar situation: the exact training ermr and generalization error both decrease as 
l/.& for (Y large, so does their difference, whereas the vc theorem predicts a a 
behaviour (cf equations (1 1) or (14)). 

We conclude with a word of caution conceming the practical implementation of the 
VC theorem. It is often stated that the VC theorem guarantees good generalization if one 
is able to load onto a given network a number of training examples much larger than the 
corresponding vc dimension. This statement can be misleading for the following reason. 

J M R Parrondo and C Van den Broeck 
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Just as the Hoeffding inequality i cannot be applied to the best function selected from a 
whole class of functions, the vc theorem cannot be used for the hypothesis class that 
is selected for its best performance amongst a whole set of classes. In fact, trying to 
load the training examples on various hypothesis classes (corresponding, for example. to 
various neural network architectures) is tantamount to enlarging the hypothesis class with 
a corresponding increase in the VC dimension. In such a case it is plainly wrong to apply 
the vc theorem using the vc dimension of the class that is selected because of its best 
perfkance.  
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Appendix A 

Defining the step function as e ( x )  = 1 for x > 0 and 0 otherwise, one can Write probability 
(3) as a mean value 

ProbIsup [ U ;  - efl =- E ]  = (€!(sup Iv; - efl - 6 ) )  
f€3  f E 3  

= (supB(lv; f c 3  -ef[  - E ) )  (27) 

= (sup[e(v; - e7 - E )  + @(ef - U; - 4 1 ) .  
f €3 

The bracket (. . .) denotes an average over the choice of the m examples determining the 
value of v;. One of the main steps in the theorem i s  to construct an inequality such that one 
can eliminate the ef  dependence in the mean value. This can be achieved by introducing 
a new training set with m’ examples for which the function f gives a frequency of errors 
U;’. since e(x)e(x’)  < e(x + x ’ ) ,  one has 

The inequality (28) is valid for any value of U,$ and hence also for the average (. . .)’ over 
the choices of the m‘ examples, i.e. 

Recalling that m’v;’ is a random variable with binomial distribution and mean value m‘ef 
is not hard to prove [I81 that 
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and from (30) we conclude that 

J M R Parrondo and C Van den Broeck 

In a similar way one can easily prove that 

Finally, combining (27), (31) and (32) yields 

or 

This result is called the basic lemma by Vapnik and Chervonenkis [15]. Note that the 
result given here is an improvement on the original vc result in two ways. First, they 
considered only the case m = m‘. On the other hand, instead of the lower limit E - 1 f m 
they have €12 with the extra condition that l l m  < €12. Both ideas are present in the proof 
given by Devroye [ 171 but he did not split the step function of the absolute value obtaining 
a much weaker inequality valid only for m‘ > m2j4. 

We can now introduce the classification diversity of our class of functions 3 for a 
given choice of these examples the functions f E 3 can be collected in equivalence classes 
f. such that all functions within a given equivalence class f have an identical classification 
of the m + m‘ examples. Since the functions in 3 induce at most A(m + m‘) different 
classifications of any m + m‘ training examples, the total number of equivalence classes is 
bounded by A(m + m’) for any choice of the examples. 

Since the outcome on the examples is the same for all the elements belonging to the 
same class ,f one has 

where the sum in the right-hand side runs over ail the equivalence classes. 
Note that these equivalence classes depend on the choice of the examples but not on 

the order they appear in the total sample. On the other hand, the total mean value is also 
invariant under permutations of the m f m ’  examples. Then it is possible to write 
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where the sum runs over all the possible permutations U of the m +m‘ examples and d u ? )  

and u(u?‘) are the frequencies resulting in the two considered subsamples after permuting 
the examples of the whole sample (note that the composition of each subsample can be 
modified by the permutation). It tums out that the quantity 

f 
f 

can be bound for all the possible outcomes. We will consider two different bounds for r. 
The first one is valid for m = m’ and can be found in [12] 

rr < 3 ~ c ’ .  (37) 

The second one, derived in [ 111 and [ 171, is weaker for the special case m = m‘ but gives 
stronger results when m‘ >> m. It reads 

Finally, combining the basic lemma (33), (35) and the bound for r (37), one immediately 
obtains equation (9) of the main text. If (38) is used instead of (37) then (12) is recovered. 

Appendix B 

The proof runs along lines similar to those of appendix A. One has 

Prob(sup [U/” - efl > E )  = (supS(ufm, O)e(e, - E ) )  (39) 
f&* f € : 3  

where S ( i ,  j )  is the Kronecker’s delta. 
Using again that 

one finds 

This leads to the following basic lemma for the frequency one case (cf equation (33)) 

The basic lemma derived in [IS] follows steps similar to those of the original proof by 
Vapnik and Chervonenkis [151. Therefore their basic lemma is a special case of ours with 
m = m’ and €12 instead of E - ljm’ in the right-hand side of the inequality (42). Anthony 
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and Biggs [8] also derive a basic lemma which is, however, again slightly weaker and more 
restrictive than (42). 

The main difference between the general case comes from the bound for the fraction of 
permutations re that satisfy the inequality appearing as the argument of the probability in 
the right-hand side in the basic lemma (42). Now r, reads 

J M R Parrondo and C Van den Broeck 

and, by a direct combinatorial analysis, can be bound by 

Finally, from inequalities (42), (44) and by means of an argument similar to the one used 
in appendix A, the final result (16) is obtained. 

Appendix C 

The proof of the inequality (22) again runs along similar lines. The main difference lies in 
the evaluation of the combinatorial factor r that counts the fraction of permutations over 
the whole sample with m l  + mz -+ m‘ examples which contributes to the mean value 

This fraction T,(ml, mz, , k ) ,  as a function of the number k of errors in the whole sample, 
can be calculated combining arguments of the preceding cases 

Finally, using the bound for r6(0, m2. k )  derived in 1121 for the special case m‘ = mz, one 
finds 

which immediately leads to (22). 
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